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ABSTRACT 

 
The null Killing surfaces for the Kerr and Kerr-Newman solutions to the 
Einstein field equations are discussed, derived and plotted.  For some 
parameters of the mass m, the angular momentum per unit mass a, and the 
charge e, the plots show some unusual features, particularly of the Kerr-
Newman metric.   
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The Kerr-Newman Metric 

 
The Kerr-Newman metric in Kerr-Schild coordinates is given by 

 

𝑑𝑠! = 𝑑𝑥! + 𝑑𝑦! + 𝑑𝑧! − 𝑑𝑡! +
2𝑚𝜌" − 𝑒!𝜌!

𝜌# + 𝑎!𝑧! /𝑘$𝑑𝑥$1
!, 

             (1) 

where e is the charge, m the mass, a the angular momentum per unit mass, and the surfaces of 

constant r are confocal ellipsoids of revolution, the equation for which is derived from the 

defining relations for oblate spheroidal coordinates: 

 

𝑥 = 𝑎	𝑐𝑜𝑠ℎ𝜉	𝑐𝑜𝑠𝜂	𝑐𝑜𝑠𝜙	 

𝑦 = 𝑎	𝑐𝑜𝑠ℎ𝜉	𝑐𝑜𝑠𝜂	𝑠𝑖𝑛𝜙	 

𝑧 = 𝑎	𝑠𝑖𝑛ℎ𝜉	𝑠𝑖𝑛𝜂.											 

             (2) 

The null vector field 𝑘$ is given by 

 

𝑘$𝑑𝑥$ = 𝑑𝑡 +
𝑧
𝜌 𝑑𝑧 +

𝜌
𝜌! + 𝑎!	

(𝑥𝑑𝑥 + 𝑦𝑑𝑦) +
𝑎

𝜌! + 𝑎!	
(𝑥𝑑𝑦 − 𝑦𝑑𝑥). 

             (3) 

 

 Note that if 𝜌 = 𝑒!/2𝑚 the metric of Eq. (1) becomes that of 4-dimensional Euclidean 

space.  The metric given by Eq. (1) has a ring singularity located at 𝑅 ≔ (𝑥! + 𝑦!)
!
" = 𝑎 and 

z = 0 (where r = 0).  The definition of R is important to remember in what follows. 

 

 From Eqs. (2) one can then compute  

𝑥! + 𝑦!

𝑎!	𝑐𝑜𝑠ℎ!𝜉 +
𝑧!

𝑎!	𝑠𝑖𝑛ℎ!𝜉 = 1. 

             (4) 
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 Setting 𝜌! = 𝑎!	𝑠𝑖𝑛ℎ!𝜉 results in 

 

𝑥! + 𝑦!

𝜌! + 𝑎!	 +
𝑧!

𝜌! = 1. 

             (5) 

 

r in the metric given by Eq. (1) is implicitly determined by Eq. (5) up to a sign.  

 

A null Killing surface is also known as a Killing horizon.  It is where a Killing vector changes 

from time-like to space-like or visa-versa when crossing the surface.  The null Killing surfaces 

for the Kerr-Newman metric are obtained by setting the g00 component of the metric equal to 

zero.  This results in the equation, 

 

𝜌# − 2𝑚𝜌" + 𝑒!𝜌! + 𝑎!𝑧! = 0. 

             (6) 

 

To obtain the solutions to this equation, Eq. (5) is solved for r in terms R and z and one of the 

four solutions is substituted into Eq. (6).  There are nine very long solutions to the resulting 

equation: one zero, four imaginary and four that correspond to pieces of the null Killing surface.   

 

For comparison, the null Killing surfaces for the Kerr metric, where e = 0, have been given by 

Marsh.1  Figures (1) and (2) from that work show examples for different values of the 

parameters a and m.  The azimuthal angle has only been partially plotted in order to show the 

interior features.   
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Figure 1. The Kerr null Killing surfaces for m =1.02 a.      Figure 2 The Kerr null Killing surfaces for a > m.  
The ring singularity is at the cusp of the inner surface.        Here m = 0.98 a. 

 

These null Killing surfaces are found by setting g00 = 0 in the Kerr metric.  Explicitly, Eq. (6) 

is solved for z, and e is then set equal to zero followed by the null surfaces for the Kerr solution 

being plotted.  For the Kerr-Newman metric, Eq. 11 of Marsh gives g00 as 

 

𝑔%% =
𝑥! + 𝑦! − 𝑎! − 2𝑚(𝑥! + 𝑦! − 𝑎!)

&
! + 𝑒!

𝑎! − (𝑥! + 𝑦!) . 

             (7) 

 

Before proceeding it is worth looking at the nature of the disk circled by the ring singularity in 

the Kerr solution.  This space is flat and has the character of a quadratic branch point in the 

complex plane; that is, if one passes through the surface form above the coordinate labeling the 

oblate spheroidal surfaces of constant r is negative.  The Kerr solution in the negative r region 

is identical in structure to the positive r part with m being replaced by its negative, which then 

causes g00 to change sign in this region.   

 

The geometry around the disk circled by the ring singularity for the Kerr-Newman solution is 

quite different from that of the Kerr metric.  The line element for the Kerr-Newman solution in 

Kerr-Schild coordinates with the mostly minuses signature is 
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𝑑𝑠! = 𝑑𝑡! − 𝑑𝑥! − 𝑑𝑦! − 𝑑𝑧!

−
𝑟!(2𝑀𝑟 − 𝑒!)
𝑟# + 𝑎!𝑧! 	 G

[𝑟(𝑥	𝑑𝑥 + 𝑦	𝑑𝑦) − 𝑎(𝑥	𝑑𝑦 − 𝑦	𝑑𝑥)]
𝑟! + 𝑎! +

𝑧	𝑑𝑧
𝑟 + 𝑑𝑡J

!

. 

             (8) 

 

As can be seen from the term before the first set of brackets, the metric becomes that of flat 

Minkowski space for 𝑟 = 	 𝑒!/2𝑀.  This also true for negative r, since M changes sign for that 

region.  This was noted by López2, following Israel3, when attempting to create a classical 

model of the spinning electron using the Kerr-Newman solution.  The Kerr-Newman metric 

has no null Killing surfaces for e2 > m2 nor for e2 = m2 and a > 0.  The parameters for the 

electron tells us that in this model there would be no null Killing surfaces. 

 

The nature of g00 for the Kerr-Newman solution can be seen by plotting Eq. (7).  The result is 

shown in Fig. 3. 

 

 
Figure 3.  The surfaces of g00 for the Kerr-Newman solution.  The parameters 
used for the figure are a = 1, e = 0.9, m = 1.34536, and z = 0.  Note that the 
surfaces are outside the ring singularity and make no contact with it.   

 

For the null Killing surfaces of the Kerr-Newman metric, Eq. (5) is again solved for r in terms 

of R and z and one of the four solutions substituted into Eq. (6). There are nine solutions to the 
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resulting equation: one zero, four imaginary, and four that again correspond to pieces of the 

null Killing surfaces.  In the case of the Kerr metric, when e is zero, there are only eight 

solutions.  For certain choices of the parameters m, a, and e, either one or both of the null 

Killing surfaces may not exist, and the relationship of the ring singularity to these surfaces 

changes. 

 

For e = 0, the null Killing surfaces of the Kerr-Newman solution are shown in Fig. 4.   

 

 
Figure 4.  The Kerr-Newman null Killing surfaces for e = 0 and a = m = 1.  
The ring singularity for a = 1 borders the inner null surface as in the Kerr 
metric.    

 

Note that the proportion of the height and width of Fig. (4), and in the following plots, reflect 

the “golden ratio” of 1.61803, which flattens the figures.  The golden ratio is a constant the 

gives the limiting value of ratios of successive Fibonacci numbers.  Because r takes both 

positive and negative values the metric is smooth everywhere away from the ring singularity.  

The space where r is negative is asymptotically flat.  For r < 0, the azimuthal vector is timelike 

so that there are closed timelike curves.4  These non-causal curves extend a small distance into 

the positive r region.  Note that e and m respectively represent the charge and mass in the limit 

of large positive r.  In the limit of large negative r, the mass and charge are -m and -e.   
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With regard to the closed timelike curves of the Kerr-Newman solution for r < 0, there is a 

relevant theorem given by Geroch5 that every compact geometry without boundary has closed 

timelike curves.  The closed Friedmann model of the universe, topologically a 3-sphere having 

a compact spacelike surface, is an example. 

 

For the parameters e = 0.1 and a = m = 1, the null Killing surfaces are shown in Fig. 5. 

 

 
Figure 5.  The Kerr-Newman null Killing surfaces for e = 0.1 and a = m = 1.   

 

There are two important features of Fig. (5) to note: the first is that a non-zero value of e opens 

up the surfaces at the poles allowing passage into the inner null surface, as is the case for the 

Kerr metric with a > m; and the second is that the inner surface does not terminate at the ring 

singularity located at r = 1, unlike the Kerr metric, but at a somewhat greater value of r.  This 

means that the ring singularity is reachable from outside the surfaces.  What cannot easily be 

seen in Fig. 5 is that there is a gap at the equator.  This is shown in Fig. 6. 
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Figure 6.  An equatorial view of the Kerr-Newman null Killing 
surfaces for e = 0.1 and a = m = 1 showing the gap barely 
visible in Fig. 5.   

 

As the value of e increases, the gap in the null surfaces decreases, and when a2 + e2 > m2 and 

m > a > e the null surface becomes a toroid.  This is shown in Fig. 7(a) and (b).   

 

 ,  

   (a)          (b) 
Figure 7.  the Kerr-Newman null Killing surfaces for e = 0.9, a = 1, and m = 1.02.  The ring singularity is 
outside the toroidal surface. 

 

The gap seen in the inner part of the toroid shown in Fig. (7) measures ~0.4.  As pointed out 

above, the metric becomes that of flat Minkowski space for 𝑟 = 	 𝑒!/2𝑚.  For the values of the 
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parameters used to plot Fig.7, 𝑒!/2𝑚 ~0.4, which is what the gap measures in the figure.  Here 

is another relevant figure from the paper by Marsh: 

 
Figure 8.  The null Killing surface for the Kerr-Newman solution with m =1.02, a = 1, and e = 0.9 
is obtained by rotating this figure about the z-axis. The time-like Killing vector becomes space-like 
within the toroid. The ring singularity is located at R = 1.  While it is not obvious from the figure, 
there is a gap where graph crosses the R-axis at R~1.12.  The gap is far more obvious in Fig. 7. 

 

 

Astrophysical Applications of the Kerr and Kerr-Newman Metrics 
 

Besides the Schwarzschild and Reissner-Nordström metrics, two of the most important metrics 

in general relativity are the Kerr and Kerr-Newman solutions.  The first describes the 

gravitational field or a rotating body and its applicability to the exterior of massive bodies has 

been well confirmed by observation.  The Kerr-Newman solution describes the gravitational 

and electromagnetic fields of a rotating and charged mass.  For astrophysical purposes, 

however, this solution has had no confirmation by observations.   

 

In order to describe the entire spacetime of either solution, the exterior solutions must be 

matched to an interior solution.  Unfortunately, there are no known non-singular interior 

solutions for these metrics.  Nonetheless, the Kerr solution has been found to have great 

astrophysical applicability.   
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An additional problem exists for the Kerr-Newman solution.  Whether or not the universe as a 

whole is charged or not, it is believed that conservation of charge would still apply.  This 

implies that massive bodies described by the Kerr-Newman solution must be created in pairs 

having opposite electric charge.  Even if this could occur, the charges would likely be 

neutralized by surrounding ionized gas.    
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